Analysis of a Population Model with Strong Cross-Difusion in an Unbounded Domain

نویسنده

  • Michael Dreher
چکیده

We study a parabolic population model in the full space and prove the global in time existence of a weak solution. This model consists of two strongly coupled diffusion equations describing the population densities of two competing species. The system features intrinsic growth, interand intra-specific competition of the species, as well as diffusion, cross-diffusion and self-diffusion, and drift terms related to varying environment quality. The cross-diffusion terms can be large, making the system non-parabolic for large initial data. The method of our proof is a combination of a time semi-discretization, a special entropy symmetrizing the system, and compactness arguments. 2000 Mathematics Subject Classification: 35K55, 35D05, 92D25

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of a Population Model with Strong Cross-Diffusion in an Unbounded Domain

We study a parabolic population model in the full space and prove the global in time existence of a weak solution. This model consists of two strongly coupled diffusion equations describing the population densities of two competing species. The system features intrinsic growth, interand intra-specific competition of the species, as well as diffusion, cross-diffusion and self-diffusion, and drif...

متن کامل

Numerical solution of Fredholm integral-differential equations on unbounded domain

In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...

متن کامل

Axisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media

Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...

متن کامل

Fractional Order Generalized Thermoelastic Functionally Graded Solid with Variable Material Properties

In this work, a new mathematical model of thermoelasticity theory has been considered in the context of a new consideration of heat conduction with fractional order theory. A functionally graded isotropic unbounded medium is considered subjected to a periodically varying heat source in the context of space-time non-local generalization of three-phase-lag thermoelastic model and Green-Naghdi mod...

متن کامل

Consolidation Around a Heat Source in an Isotropic Fully Saturated Rock with Porous Structure in Quasi-Static State

The titled problem of coupled thermoelasticity for porous structure has been solved with an instantaneous heat source acting on a plane area in an unbounded medium. The basic equations of thermoelasticity, after being converted into a one-dimensional form, have been written in the form of a vector-matrix differential equation and solved by the eigenvalue approach for the field variables in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006